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Abstract. We use a position space renormalisation group transformation to show that 
directed diffusion limited aggregation and directed animals are in different universality 
classes. 

The problem of kinetic aggregation models of the type introduced by Witten and 
Sander (1981) has attracted much interest (Meakin 1983a, b). These models give an 
idealised description of the process in which diffusing particles aggregate to form 
clusters. A detailed analysis for smoke particle aggregates is given in Forrest and Witten 
(1979). In this letter we consider a directed form of the ‘Witten-Sander’ model which 
describes the aggregation of particles in the presence of a force field; for example the 
aggregation of smoke particles in a large electric field. Nadal et a1 (1984) have carried 
out Monte Carlo simulations for this model and shown that it has significantly different 
critical exponents from those of directed lattice animals. This implies that directed 
diffusion limited aggregation and directed lattice animals are in separate universality 
classes. We use a PSRG (position space renormalisation group) approach similar to 
the analysis by Gould et a1 (1983) of the ‘Witten-Sander’ model and isotropic lattice 
animals, to confirm this result. An estimate for the value of the critical exponent vll 
is obtained. 

We begin by describing the two models and then describe in detail the renormalisa- 
tion group calculation. We consider both the directed animal and aggregation model 
on a two-dimensional square lattice. We place a source site at the origin and allow 
the cluster to grow only eastwards or northwards. Thus the cluster grows preferentially 
along the ( I ,  1) axis. For the animal problem each cluster with s sites has probability 
K ’  where K is the fugacity of an occupied site. For the diffusion limited aggregation 
problem, the cluster is formed by releasing from infinity successive particles which 
each follow a directed random walk until they reach a possible next growth site for 
the cluster. In this case the probability depends not only on the number of sites but 
also on the walks available to each site. It is this difference in probabilities which 
implies that the two problems are in different universality classes. This is similar to 
the difference between a true self avoiding random walk and a self repelling chain 
(Amit et a1 1983). 

We perform our PSRG calculation using a 2 x 2  cell to site transformation on a 
square lattice similar to that of Gould et a1 (1983) for the isotropic system (for a recent 
review of these methods see Stanley et a1 1982). In this transformation each 2 x 2  cell 
containing four sites is mapped onto a single site. The lattice spacing in the renormalised 
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system is thus twice that in the original system. We place our seed particle at the 
bottom left-hand corner of the cell and define a cell to be spanned (occupied) if the 
top right-hand corner is also occupied. We notice that if we carry out this transformation 
on a particular configuration we may find that a connected configuration on the original 
lattice is no longer connected in the renormalised system. This is an interface effect 
between the cells and should decrease as the cell size is increased (Reynolds er a1 1980, 
Stanley et a1 1982). In figure 1 we show all the spanning clusters of sites on a 2 x 2  
cell. For a directed animal it follows directly from this picture that the probability 
that the cell is spanned is 

R , ( K )  = 2 K 3  + K 4 .  (1) 

0 0  0 0  0 0  

Figure 1. The set of spanning clusters of sites in a 2 x 2  cell. 0 =occupied site: 0 =vacant 
site. 

For the directed aggregation model we need to also define a bond lattice for the directed 
random walks. We choose the lattice shown in figure 2 and assign to each step of a 
walk a probability w. By considering all possible ways of building each cluster using 
different walks, we can calculate the probability R,(K, w )  that the cell is spanned: 

R 2 ( K ,  w ) = 4 w 2 K 3 ( 1  +2w)+8w3K4(1  +2w) .  ( 2 )  

Figure 2. We show the 2 x2  bond lattice for the directed random walks and the transforma- 
tion to single bonds. 

We can thus write down a recursion relation for K 

K ' =  R 2 ( K ,  w ) .  (3) 
We also need a recursion relation for w and making the transformation shown in 
figure 2 then 

( 4 )  
This equation has a fixed point at w *  = $  which is the exact fixed point for a directed 
random walk on a square lattice (Redner and Majid 1983). In order to look at the 
differences between the two models we consider an aggregation model in which the 
seed sites can be all possible directed animals. The new probability function for 
spanning clusters is 

(5) S2(K ,  w ) = 2 K 3 + K 4 + 4 w K 3 ( 1  + U  +2w2)+4wK4(1  +2w +2w2+4w3) .  

We calculate the new equation for w by considering all walks on a cell which is already 

w'  = w 2  + 2w'. 
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partly occupied and find 

w i = w 2 + 2 W 3 + ~ 2 w 2 + 2 w 2 ~ ( ~  

In figure 3 we plot the behaviour of the recursion equations 

K '  = S2( K ,  w )  (7) 

and equation (6). We see that there are three non-trivial fixed points: one at K =0 ,  
w = 4 which is that of a directed walk, one at w = 0, K = 0.62 which is that for a directed 
animal and one at K =0.42, w =0.34 which corresponds to the directed diffusion 
limited aggregation problem. Thus the directed aggregation problem is in a different 
universality class from that of directed animals. 

Figure 3. This diagram shows the behaviour of the recursion relations ( 6 )  and (7). The 
fixed point A is for directed walks, B for directed animals and C for directed aggregation. 

We then calculated a value for the exponent vII directly from our 2 x 2  results (2) 
and (4). If we define 

(8) A K  = aR2(K,  w ) / a K  I K * , w C  

where K *  and w *  are the fixed point solutions of equations (3) and (4) then 

(9) vll = In 2/ln A K  = 0.57. 

We also repeated this calculation for a 3 x 3  cell to site transformation and a 3 x 3  to 
2 ~2 cell to cell transformation. The results for these calculations are given in table 
1. We always find vll near to 0.6 compared with the Monte Carlo value of 0.52 (Nadal 
et a1 1984). This discrepancy is not surprising and comes from two sources. The first 
is the strong interface effects between small cells which we mentioned earlier. We 
believe that these will not affect the qualitative behaviour of the system and therefore 
that the phase diagram will have the same structure as shown in figure 3 when the cell 
size is increased. However we do  expect them to affect exponent values. The second 
source of error is that we have not allowed for the different scaling factors of the 
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Table 1. Y,, for directed aggregation. 

Method K *  U *  Yll 

2 x 2 cell to site 0.57 0.5 0.57 
3 x 3  cell to site 0.43 0.5 0.59 
3 x 3  to 2 x 2  cell to cell 0.34 0.5 0.62 
3 x 3  to 2 x 2  cell to cell with patching 0.46 0.5 0.60 
Monte Carlo 
Nadal el  al (1984) - - 0.521 0.02 

parallel and perpendicular length scales in the problem. Herrmann er al (1983) have 
suggested an improved method which involves patching the cells together to form an 
infinite strip and allowing clusters which connect between neighbouring cells. He 
claims that if a sequence of values of K *  and vll for increasing size cell to cell 
transformations is obtained then in the limit of infinite cell size the correct results are 
obtained. So good estimates can hopefully be obtained by examining the sequence. 
Unfortunately in the case of directed aggregation we have only 3 x 3  and 2 x 2  results 
and thus can obtain only one term in the sequence and cannot look at the limit of 
large cell size. 

I would like to thank Professor M A Moore for his help in the preparation of this 
letter and Dr M A Green for his assistance with the computation of the 3 x 3  result. 
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